Z tego filmu dowiesz się:

  • czym jest energia potencjalna grawitacji i od czego zależy,
  • jak magazynować energię potencjalną grawitacji.

Podstawa programowa

Pobieranie materiałów

Licencja: cc-by-nc-sa.svg

Poniższe materiały są udostępnione na licencji Creative Commons Uznanie autorstwa-Użycie niekomercyjne-Na tych samych warunkach 4.0 Międzynarodowej (https://creativecommons.org/licenses/by-nc-sa/4.0/deed.pl). Możesz je wykorzystywać wyłącznie jako całość, bez rozdzielania ich na indywidualne elementy składowe. Zabronione jest wycinanie, pobieranie, modyfikowanie, edytowanie i zmienianie elementów składowych (np. grafik, tekstów, dźwięków, logotypów). Licencja CC BY-NC-SA 4.0 nie obejmuje wykorzystywania elementów składowych w utworach pochodnych. Jeśli chcesz wykorzystać ten materiał w swoim niekomercyjnym projekcie, nie zapomnij wymienić jego autorów: Pi-stacja / Katalyst Education.

Transkrypcja

Kliknij na zdanie, aby przewinąć wideo do tego miejsca.

Znany skoczek narciarski, Dawid Kubacki powiedział kiedyś: paliwem w przypadku szybowców i skoków narciarskich jest to samo czyli energia potencjalna. Im jesteśmy wyżej na skoczni im wyższą mamy belkę tym więcej paliwa mamy na lot. W szybowcach sytuacja jest podobna. Początkowy zapas paliwa dostarcza nam wyciągarka albo samolot, a później wykorzystując prądy wznoszące można dotankować tego paliwa w powietrzu mimo że nie ma się silnika. Wyobraź sobie, że nad Twoją głową ktoś umieszcza cegłę zawieszoną na niezbyt grubym sznurku. Jak się z tym czujesz? Pewnie momentalnie odskoczysz na bok. Ale dlaczego? Przecież cegła się nie rusza. Po prostu sobie tam wisi. Mówisz, że potencjalnie może spaść? Ano może, i w tym właśnie zdaniu zawarte jest sedno dzisiejszej lekcji. Energia potencjalna, to inaczej mówiąc możliwość, czyli potencjał ciała do wykonania ruchu. Taką energię ma nasza wisząca nad głową cegła ale także strzała w napiętym łuku czy ściśnięta sprężyna. W tej lekcji skupimy się jednak na energii potencjalnej grawitacji czyli tej od spadania właśnie. Skąd ta energia się bierze? Otóż Ziemia wytwarza wokół siebie pole grawitacyjne. To dzięki niemu stoimy na niej a nie latamy w przestrzeni. Im dalej od Ziemi, tym to pole jest słabsze dlatego my skupimy się na przestrzeni blisko jej powierzchni, gdzie możemy przyjąć że jest względnie stałe. Pole to działa na każde ciało. Nie ma tu wyjątków. Każde ciało jest przyciągane a więc każde ciało, które podniesiemy na jakąś wysokość, może spaść. Potencjalnie. Ma więc energię potencjalną grawitacji. Co się dzieje, kiedy takie ciało puścimy? Zaczyna spadać, a jego energia potencjalna zmienia się w kinetyczną, czyli tę od ruchu o czym opowiadamy w innym filmie tej playlisty. Pozostańmy jeszcze na chwilę w temacie spadania. Pomyśl, że ktoś wyrywa ci smartfon i macha nim półtora metra nad podłogą. Boisz się, że może spaść i się rozbić. A teraz wyobraź sobie, że ta nieodpowiedzialna osoba wychyla się z nim przez okno a zakładamy, że znajdujecie się na trzecim piętrze. Twoje obawy o smartfon są teraz większe, prawda? Spadając na podłogę, urządzenie ma jeszcze jakieś szanse przetrwania, ale upadek z trzeciego piętra oznacza bezwzględne przejście do smartfonowej krainy wiecznych łowów. Ta odrobina twojej wyobraźni pozwoliła nam dokonać kolejnej obserwacji. Energia potencjalna grawitacji jest różna na różnej wysokości. Im wyżej, tym jest większa, zatem przy upadku ciała zmieni się w większą ilość energii kinetycznej a co za tym idzie, przedmiot z większym impetem uderzy o podłoże. Ale moment, przecież urządzenie w obu przedstawionych wcześniej sytuacjach znajdowało się mniej więcej na tej samej wysokości, na trzecim piętrze jakieś 10 metrów nad ziemią. Skąd więc te różnice w energii potencjalnej? Jak to w fizyce często bywa wszystko zależy od punktu odniesienia. Jeśli telefon znajduje się półtora metra nad podłogą podczas spadania to na niej się zatrzyma i to ją przyjmujemy za punkt odniesienia. Możemy przyjąć, że leżąc na podłodze ma energię potencjalną grawitacji równą zeru względem tej podłogi. Jeśli jednak znajdzie się za oknem sytuacja diametralnie się zmieni bo spadać będzie całe 10 metrów, aż na chodnik, i nic go po drodze nie powstrzyma. Gdybyśmy wykopali dół w ziemi mógłby spadać jeszcze niżej teoretycznie aż do jądra Ziemi gdybyśmy tylko usunęli przed nim wszelkie przeszkody. Zeszyt leżący na stole ma względem tego stołu energię potencjalną grawitacji równą zeru bo leży dokładnie na nim, nie może niżej spaść. Gdy jednak przesuniemy go za krawędź wtedy spaść może, na podłogę. Możemy więc powiedzieć, że ma energię potencjalną grawitacji, ale już nie względem stołu, a względem podłogi. Aby podać wartość energii potencjalnej grawitacji, konieczny jest zatem poziom odniesienia. Ta względność energii potencjalnej grawitacji sprawia, że fizycy wolą posługiwać się nie konkretnymi jej wartościami a raczej zmianami. Jeśli mieszkasz w bloku i wracając ze szkoły musisz wdrapać się po schodach na czwarte piętro, to wdrapując się zwiększasz swoją energię potencjalną grawitacji względem parteru, na który potencjalnie możesz spaść choć na szczęście szanse masz niewielkie. Energia ta nie bierze się z nim Rośnie, bo Ty wykonujesz pracę wspinając się po schodach. Im więcej pracy wykonasz, tym większy będzie przyrost Twojej energii potencjalnej grawitacji. Przyrost tej energii jest więc równy wykonanej nad ciałem pracy. Delta E równa się W. Zjawisko zmiany energii potencjalnej grawitacji wraz z wysokością, wykorzystują elektrownie wodne. Spadająca woda napędza turbiny, te zaś wytwarzają energię elektryczną. Mamy tu więc przemianę energii potencjalnej wody w energię elektryczną. Z naszego punktu widzenia jeszcze ciekawsze są elektrownie szczytowo-pompowe. Służą one do dostosowywania ilości wypuszczanej do sieci energii do jej chwilowego zapotrzebowania. W czasie małego zapotrzebowania wyprodukowany nadmiar energii jest wykorzystywany do pompowania wody do zbiornika znajdującego się na dużej wysokości. W czasie dużego zapotrzebowania woda jest uwalniana i jej energia potencjalna przetwarzana jest z powrotem na energię elektryczną. Możemy więc powiedzieć, że taka elektrownia to ogromny akumulator wykorzystujący energię potencjalną grawitacji. Z tą wiedzą możemy już obliczyć ile energii da się przechowywać w takim wodnym akumulatorze. Zadanie brzmi: Ile energii potencjalnej przechowa każdy litr wody po jego wpompowaniu na wysokość 15 metrów powyżej początkowego poziomu? Wiemy już, że wzrost energii potencjalnej grawitacji jest równy wykonanej nad ciałem pracy, czyli delta Ep równa się W. Aby więc obliczyć, o ile wzrosła energia naszego litra wody, musimy obliczyć pracę jaka została na tej wodzie wykonana podczas przepompowywania. Z innej naszej lekcji dowiesz się, że praca to iloczyn drogi, jaką pokona ciało i siły, jaka spowodowała to przesunięcie czyli W równa się s razy F. W naszym przykładzie droga to wysokość na jaką wpompowaliśmy wodę s równa się h, a siła? Jaką siłą pompa musi działać na wodę, aby ta przemieszczała się w górę? Pompa musi zrównoważyć siłę grawitacji a więc jej siła jest równa co do wartości sile grawitacji. Zapisujemy to jako: F równa się Fg równa się m razy g. Trochę nam to zajęło, ale możemy już złożyć nasz wzór z półproduktów Delta Ep równa się m razy g razy h. Podstawiamy. Masa 1 litra wody to 1 kg razy przyspieszenie ziemskie, czyli 10 metrów na sekundę kwadrat i razy wysokość, na jaką wpompowano wodę czyli 15 metrów. To daje nam zmianę energii potencjalnej grawitacji o 150 dżuli. Pamiętaj, że zbiorniki elektrowni szczytowo-pompowej mieszczą miliony metrów sześciennych wody więc zgromadzona energia potencjalna grawitacji jest odpowiednio większa. Dobrze nam idzie to teraz zadanie dla Ciebie. Wracasz zmęczony ze szkoły do domu i rzucasz swój ciężki, ośmiokilogramowy tornister na podłogę. Masz jednak małe wyrzuty sumienia że będzie się kurzył, więc podnosisz go i wieszasz na wysokości półtora metra. Jaką energię potencjalną względem podłogi będzie miał wiszący tornister? Oblicz to samodzielnie, a potem sprawdź swój wynik z moim. Zrobione? To sprawdzamy. Tornister waży 8 kg i wisi na wysokości 1,5 m. Poszukajmy energii potencjalnej. Korzystamy ze wzoru, który poznaliśmy przed chwilą: Ep równa się m razy g, razy h. Podstawiamy do niego posiadane dane i otrzymujemy, że Ep równa się 8 kg razy 10 metrów na sekundę kwadrat razy półtora metra. Mnożąc 8, 10 i półtora dostajemy 120 a kilogram razy metr kwadrat na sekundę kwadrat, to dżul więc nasza odpowiedź brzmi: tornister na wieszaku ma energię potencjalną równą 120 dżulom. Energia potencjalna grawitacji to iloczyn ciężaru ciała i wysokości na której się ono znajduje. Jednostką energii potencjalnej niezależnie od jej rodzaju, jest dżul. Na dzisiaj to już wszystko. Obejrzyj nasze pozostałe filmy z playlisty "Energia mechaniczna", a po więcej materiałów zajrzyj na naszą stronę Pistacja TV.

Lista wszystkich autorów

Scenariusz: Dobrawa Szlachcikowska

Lektor: Weronika Brzezińska

Konsultacja: Anna Soliwocka, Małgorzata Załoga, Andrzej Pieńkowski

Grafika podsumowania: Patrycja Ostrowska

Kontrola jakości: Małgorzata Załoga

Zdjęcia: Anna Bednarek

Asysta zdjęć: Patrycja Ostrowska, Magdalena Adamska

Napisy: Ewelina Łasa, Анна Альохіна

Montaż: Patrycja Ostrowska

Animacja: Patrycja Ostrowska

Opracowanie dźwięku: Aleksander Margasiński

Produkcja:

Katalyst Education