Odejmowanie ułamków o różnych mianownikach

Playlista: Działania na ułamkach zwykłych o różnych mianownikach

Z tego filmu dowiesz się:


  • co zrobić, gdy musisz odjąć ułamki o różnych mianownikach,
  • jak znaleźć wspólny mianownik dla dwóch ułamków,
  • jakie są zasady odejmowania ułamków o różnych mianownikach.

Podstawa programowa


Autorzy i materiały

Lista wszystkich autorów


Tutor: Krzysztof Chojecki

Konsultacja: Małgorzata Rabenda

Grafika podsumowania: Valeriia Malyk

Materiały: Valeriia Malyk, Krzysztof Chojecki, Joanna Zalewska

Korekta: Małgorzata Załoga

Produkcja


Katalyst Education

Lista materiałów wykorzystanych w filmie


hannahlouise123 (CC0)
Katalyst Education (CC BY)

Wiedza niezbędna do zrozumienia tematu

Aby w pełni zrozumieć materiał zawarty w tej playliście, upewnij się, że masz opanowane poniższe zagadnienia.

Udostępnianie w zewnętrznych narzędziach

Korzystając z poniższych funkcjonalności możesz dodać ten zasób do swoich narzędzi.

Kliknij w ikonkę, aby udostępnić ten zasób

Google Classroom
Microsoft Teams

Kliknij w ikonkę, aby skopiować link do tego zasobu

Link do tej strony
Link do filmu na YouTube

Transkrypcja

Kliknij na zdanie, aby przewinąć wideo do tego miejsca.

Odejmowanie ułamków o różnych mianownikach rządzi się tymi samymi prawami, co dodawanie ułamków o różnych mianownikach. Za chwilę się o tym przekonasz. Widzisz pizzę, która przed zjedzeniem jednego kawałka była podzielona na 8 jednakowych części. Skoro zjedzono jeden kawałek, to zostało 7 kawałków. Jaka to część pizzy? Siedem ósmych. Wyobraź sobie teraz, że połowę pizzy chcesz zabrać do domu. Połowa pizzy to jedna druga. Aby obliczyć, jaka część pizzy zostanie do zjedzenia, wystarczy od ułamka 7/8 odjąć ułamek 1/2. Zwróć jednak uwagę, że oba ułamki mają różne mianowniki. Potrafisz odejmować już ułamki o jednakowych mianownikach. Co więc możemy zrobić? Możemy zapisać ułamek 1/2 w postaci ułamka o mianowniku 8. Popatrz na tę pizzę. Ta linia dzieli ją na dwie połowy. Połowa z ośmiu kawałków to 4 części. Jedna druga to inaczej cztery ósme. Aby rozszerzyć ułamek 1/2 do ułamka 4/8 należy licznik i mianownik pomnożyć przez 4. Jeden razy cztery to cztery. Dwa razy cztery to osiem. W tym odejmowaniu ułamek 1/2 możemy zastąpić ułamkiem 4/8. Co otrzymamy? 7/8 odjąć 4/8. Gdy odejmujemy dwa ułamki o takich samych mianownikach, to odejmujemy od siebie liczniki, a mianownik przepisujemy bez zmian. Siedem odjąć cztery to trzy. Otrzymamy trzy ósme. Do zjedzenia zostanie 3/8 pizzy. Spójrz w teraz na taki przykład. Tutaj mamy dwie trzecie odjąć jedna czwarta. Te ułamki również mają różne mianowniki. Aby je od siebie odjąć, należy sprowadzić je do wspólnego mianownika. Taka liczba będzie dzieliła się zarówno przez 3 jak i przez 4. Wypiszmy najpierw wielokrotności liczby 3. Są to liczby: 0, 3, 6, 9, 12 i tak dalej... Tyle nam wystarczy. Wypiszmy teraz wielokrotności liczby 4. Są to liczby 0, 4, 8 i 12. Oczywiście liczba 4 ma więcej wielokrotności, ale tyle też nam wystarczy. Widzimy, że wspólną wielokrotnością obu liczb jest liczba 12. Mam teraz dla ciebie zadanie: zatrzymaj lekcję i spróbuj samodzielnie rozszerzyć oba ułamki do ułamka o mianowniku 12. Aby rozszerzyć ułamek 2/3 do ułamka o mianowniku 12, wystarczy licznik i mianownik pomnożyć przez 4. Otrzymamy 8/12. Aby rozszerzyć ułamek 1/4 do ułamka o mianowniku 12, wystarczy licznik i mianownik pomnożyć przez 3. Otrzymamy 3/12. Odejmijmy od siebie te ułamki. Co otrzymamy? Osiem dwunastych odjąć trzy dwunaste to 5/12. Znowu mam zadanie dla ciebie. Zatrzymaj lekcję i spróbuj samodzielnie wykonać to odejmowanie. Znowu mamy tutaj ułamki o różnych mianownikach. Aby wykonać to odejmowanie musimy sprowadzić te dwa ułamki do wspólnego mianownika. Spróbujmy to zrobić bez wypisywania wielokrotności obu mianowników. Która liczba jest większa? 12. Liczba 12 nie dzieli się przez 8, czyli tego ułamka nie możemy zapisać w postaci ułamka o mianowniku 12. Jaka jest kolejna wielokrotność liczby 12? Dwadzieścia cztery. Czy 24 dzieli się przez 8? Tak. Wspólnym mianownikiem obu ułamków będzie więc liczba 24. Aby rozszerzyć ułamek 7/8 do ułamka o mianowniku 24, należy licznik i mianownik pomnożyć przez 3. Otrzymamy 21/24. Aby rozszerzyć ułamek 1/12 do ułamka o mianowniku 24, należy licznik i mianownik pomnożyć przez 2. Otrzymamy 2/24. Teraz możemy odjąć od siebie te dwa ułamki. Skoro mają takie same mianowniki, to odejmujemy od siebie liczniki, a mianownik przepisujemy bez zmian. 21 odjąć 2 to 19. Otrzymamy 19/24. Pamiętaj, aby na końcu sprawdzić, czy wynik da się zapisać w postaci liczby mieszanej, albo czy da się go skrócić. Ułamka 19/24 nie da się zapisać w postaci liczby mieszanej, ani go skrócić. To jest nasz wynik. Aby odjąć ułamki o różnych mianownikach, trzeba najpierw sprowadzić je do wspólnego mianownika, a następnie odjąć liczniki, a mianownik przepisać bez zmian. Pamiętaj, aby wynik zapisać w postaci ułamka nieskracalnego lub liczby mieszanej. Dzięki tej playliście nauczysz się dodawania i odejmowania ułamków o różnych mianownikach. Wszystkie playlisty znajdziesz na naszej stronie internetowej, pistacja.tv.

Pobieranie materiałów

Poniższe materiały są udostępniane na otwartej licencji Creative Commons Uznanie autorstwa 4.0.

cc-by