Dodawanie liczb mieszanych o różnych mianownikach w części ułamkowej

Playlista: Działania na ułamkach zwykłych o różnych mianownikach

Z tego filmu dowiesz się:


  • jak dodawać liczby mieszane o różnych mianownikach w części ułamkowej,
  • co zrobić, by liczby mieszane miały jednakowe mianowniki,
  • jakie są zasady dodawania liczb mieszanych.

Podstawa programowa


Autorzy i materiały

Lista wszystkich autorów


Tutor: Krzysztof Chojecki

Konsultacja: Małgorzata Rabenda

Grafika podsumowania: Valeriia Malyk

Materiały: Joanna Zalewska, Agnieszka Opalińska, Valeriia Malyk

Korekta: Małgorzata Załoga

Produkcja


Katalyst Education

Lista materiałów wykorzystanych w filmie


Maria Kosowska (CC BY)
Katalyst Education (CC BY)

Wiedza niezbędna do zrozumienia tematu

Aby w pełni zrozumieć materiał zawarty w tej playliście, upewnij się, że masz opanowane poniższe zagadnienia.

Udostępnianie w zewnętrznych narzędziach

Korzystając z poniższych funkcjonalności możesz dodać ten zasób do swoich narzędzi.

Kliknij w ikonkę, aby udostępnić ten zasób

Google Classroom
Microsoft Teams

Kliknij w ikonkę, aby skopiować link do tego zasobu

Link do tej strony
Link do filmu na YouTube

Transkrypcja

Kliknij na zdanie, aby przewinąć wideo do tego miejsca.

Takie działanie wygląda nieco strasznie, co nie? A czy wiesz, że po obejrzeniu poprzednich lekcji z tej playlisty masz wszystkie umiejętności potrzebne do jego obliczenia? Zaraz pokażę ci, co i jak. Krzyś i Paweł z czterech rur o długości: 1/2 m, 2/3 m, 1/3 m i 3/4 metra chcą zbudować jedną rurę. Chłopcy podzielili się obowiązkami. Umówili się, że pierwszą i drugą rurę połączy Krzyś, a trzecią i czwartą - Paweł. Obliczmy, jak długą rurę otrzyma Krzyś po połączeniu swoich części. Aby to zrobić wystarczy do 1/2 m dodać dwie trzecie metra. Dodajmy do siebie oba ułamki. Zapiszę działanie pod spodem: 1/2 dodać 2/3. Na razie pominę jednostki. Zatrzymaj lekcję i spróbuj wykonać to dodawanie samodzielnie. Mamy tutaj dwa ułamki o różnych mianownikach. Aby je do siebie dodać należy sprowadzić je do wspólnego mianownika. Jaka liczba dzieli się zarówno przez 2 jak i przez trzy? Sześć. Oba ułamki możemy rozszerzyć do ułamków o mianowniku sześć. Jedna druga to inaczej trzy szóste. Dwie trzecie to inaczej cztery szóste. Dodajmy do siebie 3/6 i 4/6. Co otrzymamy? Siedem szóstych. Zwróć uwagę, że w tym ułamku licznik jest większy niż mianownik. Ten ułamek możemy więc zamienić na liczbę mieszaną. Ile razy liczba 6 mieści się w liczbie 7? Jeden raz. Otrzymamy 1 i 1/6. Krzyś po połączeniu swoich części otrzymał rurę o długości jednego i jednej szóstej metra. Sprawdźmy, jak długą rurę otrzymał Paweł po połączeniu swoich części. By to zrobić, wystarczy do jednej trzeciej metra dodać trzy czwarte metra. Mam więc dla ciebie zadanie. Spróbuj samodzielnie dodać do siebie ułamki 1/3 i 3/4. Mianownikami tych ułamków są liczby 3 i 4. Liczbą, która dzieli się zarówno przez 3 jak i przez 4 jest liczba 12. Sprowadźmy więc te ułamki do ułamka o mianowniku 12. 1/3 to inaczej 4/12. 3/4 to inaczej dziewięć dwunastych. Mamy teraz ułamki o jednakowych mianownikach, więc dodajemy do siebie liczniki. Cztery dodać dziewięć to 13. Otrzymamy 13/12. Znowu licznik jest większy od mianownika. Ten ułamek możemy zapisać w postaci liczby mieszanej. Trzynaście dwunastych to inaczej jeden i 1/12. Paweł otrzymał rurę, której długość to 1 i 1/12 metra. Po połączeniu swoich części chłopcy postanowili zbudować jedną rurę. Obliczmy jej długość. Aby to zrobić, wystarczy do jednego i 1/6 metra dodać 1 i 1/12 metra. Zmażę teraz te obliczenia, żebyśmy mieli miejsce na nowe. Obliczymy zatem, ile to jest 1 i 1/6 dodać jeden i jedna dwunasta. Przypomnij sobie teraz, jak dodajemy do siebie liczby mieszane. Oddzielnie dodajemy do siebie całości i oddzielnie części ułamkowe. Zwróć uwagę, że w częściach ułamkowych mamy ułamki o różnych mianownikach. Musimy je sprowadzić do wspólnego mianownika. Zwróć uwagę, że liczba 12 dzieli się przez 6. Ułamek 1/6 możemy więc rozszerzyć do ułamka o mianowniku dwanaście. Jedna szósta to inaczej dwie dwunaste. Otrzymamy 1 i 2/12 dodać 1 i 1/12. Dopiero po sprowadzeniu tych ułamków do wspólnego mianownika możemy wykonać dodawanie. Jeden dodać jeden to dwa. Dwie dwunaste dodać jedna dwunasta to trzy dwunaste. Popatrz na ten ułamek: mamy tu trzy dwunaste. Czy da się go skrócić? Liczby 3 i 12 dzielą się przez 3. Trzy podzielić przez trzy to jeden, a dwanaście podzielić przez trzy, to cztery. Otrzymamy więc dwa i jedną czwartą. Chłopcy zbudowali rurę, której długość to dwa i jedna czwarta metra. Mam teraz zadanie dla ciebie. Zatrzymaj lekcję i spróbuj samodzielnie wykonać takie dodawanie. Mamy tutaj sumę dwóch liczb mieszanych. Popatrzmy na części ułamkowe. Mamy tu dwa ułamki o różnych mianownikach. Najpierw musimy więc sprowadzić części ułamkowe do wspólnego mianownika. Zwróć uwagę, że liczba 4 dzieli się przez 2. Ułamek jedna druga możemy więc rozszerzyć do ułamka o mianowniku cztery. Aby to zrobić, wystarczy licznik i mianownik pomnożyć przez dwa. 1/2 to jest to samo, co 2/4. Co otrzymamy? 2 i 3/4 dodać 3 i 2/4. Teraz możemy dodać do siebie całości. Dwa dodać trzy to pięć. Następnie dodajemy do siebie części ułamkowe. Trzy czwarte dodać dwie czwarte to 5/4. Otrzymujemy więc pięć całych i pięć czwartych. Zauważ jednak, że w części ułamkowej licznik jest większy od mianownika. Pięć czwartych to inaczej 1 i 1/4. Teraz do tych pięciu całych dodajemy jeszcze jedną dodatkową całość. Otrzymamy sześć całych. Oprócz tego mamy jeszcze jedną czwartą. Wynik, który otrzymamy, to 6 całych i 1/4. Mam teraz dla ciebie kolejne zadanie. Zatrzymaj lekcję i spróbuj samodzielnie wykonać takie dodawanie. Znowu mamy tutaj dwie liczby mieszane, które w częściach ułamkowych mają ułamki o różnych mianownikach. Musimy sprowadzić je do wspólnego mianownika. Liczbą, która dzieli się zarówno przez 6 jak i przez 9, jest liczba 18. Aby rozszerzyć ułamek 1/6 do ułamka o mianowniku 18, należy licznik i mianownik pomnożyć przez trzy. Otrzymamy trzy osiemnaste. Aby rozszerzyć ułamek 4/9 do ułamka o mianowniku 18, należy licznik i mianownik pomnożyć przez dwa. Otrzymamy osiem osiemnastych. Otrzymamy takie dodawanie: 4 i 3/18 dodać 5 i 8/18. Teraz możemy dodać do siebie oddzielnie całości i części ułamkowe. Zacznijmy od całości. Cztery dodać pięć to dziewięć. Dodajmy teraz do siebie części ułamkowe. Trzy osiemnaste dodać osiem osiemnastych to jedenaście osiemnastych. Wynik, który otrzymujemy, to 9 i 11/18. Tutaj w części ułamkowej licznik jest mniejszy od mianownika. Tej części ułamkowej nie da się zamienić na liczbę mieszaną. A czy da się skrócić ten ułamek? Nie. Jedynym wspólnym dzielnikiem licznika i mianownika jest jeden. Mam dla ciebie ostatni przykład. Zatrzymaj lekcję i spróbuj samodzielnie wykonać takie dodawanie. Najpierw musimy sprowadzić części ułamkowe do wspólnego mianownika. Zwróć uwagę, że liczba dwanaście dzieli się przez sześć. Wspólnym mianownikiem będzie dwanaście. Jedna szósta to jest to samo, co dwie dwunaste. Jakie dodawanie otrzymamy? 2 i 1/12 dodać 7 i 2/12. Dodajmy do siebie teraz oddzielnie całości i części ułamkowe. Zacznijmy od całości. Dwa dodać siedem, to dziewięć. Teraz części ułamkowe. Jedna dwunasta dodać dwie dwunaste to trzy dwunaste. Otrzymujemy zatem dziewięć całych i trzy dwunaste. Zauważ, że ten ułamek da się skrócić. Jeśli licznik i mianownik tego ułamka podzielimy przez trzy, to otrzymamy 1/4. Jaki będzie wynik? 9 całych i jedna czwarta. Aby dodać i liczby mieszane z różnymi mianownikami w części ułamkowej, w pierwszej kolejności sprowadź ułamki do wspólnego mianownika. Następnie osobno dodaj całości i osobno ułamki. Sprawdź, czy część ułamkowa to ułamek właściwy. Jeśli nie, zamień go na liczbę mieszaną. Zsumuj całości i połącz z częścią ułamkową. Dzięki tej playliście dowiesz się wszystkiego, co dotyczy dodawania i odejmowania ułamków o różnych mianownikach. I pamiętaj: jeśli lubisz - zasubskrybuj!

Pobieranie materiałów

Poniższe materiały są udostępniane na otwartej licencji Creative Commons Uznanie autorstwa 4.0.

cc-by