Dzielenie liczb naturalnych przez ułamki zwykłe

Playlista: Działania na ułamkach zwykłych - mnożenie i dzielenie

Z tego filmu dowiesz się:


  • jak podzielić liczbę naturalną przez ułamek zwykły,
  • co to znaczy pomnożyć przez odwrotność ułamka,
  • czy wynik dzielenia może być większy od dzielonej liczby.

Podstawa programowa


Autorzy i materiały

Lista wszystkich autorów


Tutor: Krzysztof Chojecki

Konsultacja: Małgorzata Rabenda

Grafika podsumowania: Agnieszka Opalińska

Materiały: Krzysztof Chojecki, Valeriia Malyk

Korekta: Małgorzata Załoga

Produkcja


Katalyst Education

Lista materiałów wykorzystanych w filmie


Katalyst Education (CC BY)

Wiedza niezbędna do zrozumienia tematu

Aby w pełni zrozumieć materiał zawarty w tej playliście, upewnij się, że masz opanowane poniższe zagadnienia.

Udostępnianie w zewnętrznych narzędziach

Korzystając z poniższych funkcjonalności możesz dodać ten zasób do swoich narzędzi.

Kliknij w ikonkę, aby udostępnić ten zasób

Google Classroom
Microsoft Teams

Kliknij w ikonkę, aby skopiować link do tego zasobu

Link do tej strony
Link do filmu na YouTube

Transkrypcja

Kliknij na zdanie, aby przewinąć wideo do tego miejsca.

HTML to jeden z pierwszych języków do tworzenia stron internetowych. Dzięki specjalnym kodom, w tym języku można również zapisywać ułamki. Przykłady ułamków oraz ich zapis w języku HTML widzisz teraz na tablicy. Wyobraź sobie, że idziesz z przyjaciółmi na pizzę i zamawiacie po jednej dla każdego. Na przykład cztery. Każda pizza jest podzielona na dwie jednakowe części. Pizze są duże, a wy nie macie jakiegoś wielkiego apetytu. Każdy z was zjada więc jedną część z dwóch. Ilu kolegów mogłoby się zatem najeść tymi czterema pizzami? Każda była podzielona na dwie części i były cztery takie pizze. Pomnożę więc liczby cztery i dwa. Każda osoba zjadłaby po jednym kawałku, więc rysuję kreskę ułamkową i w mianowniku 1. Zobacz, co zrobiliśmy. Liczbę 4 pomnożyliśmy przez mianownik i ten iloczyn zapisaliśmy w liczniku. W mianowniku z kolei zapisaliśmy licznik ułamka, przez który dzieliliśmy. Cztery razy dwa to osiem, a osiem pierwszych to 8. Gdybyśmy mieli 4 pizze i każda osoba zjadałaby po jednej części z dwóch, to taką pizzą najadłoby się 8 osób. Pokażę ci, jak jeszcze inaczej można obliczyć ten sam przykład. Najpierw przepisujemy liczbę, którą dzielimy przez ułamek. W tym przypadku jest to liczba 4. Następnie dzielenie zamieniamy na mnożenie. Liczbę 4 pomnożymy przez odwrotność tego ułamka. Aby ją otrzymać, wystarczy zamienić miejscami licznik i mianownik. Odwrotnością ułamka 1/2 jest ułamek 2/1. Widzisz, że dzielenie zamieniliśmy na mnożenie. Potrafisz już je wykonywać. Najpierw sprawdzamy, czy da się skrócić te liczby. W tym przypadku nie da się. Liczbę 4 mnożymy więc przez licznik, czyli przez dwa. Otrzymujemy osiem. Tę liczbę zapisujemy w liczniku, a w mianowniku przepisujemy liczbę jeden. Osiem pierwszych. to nic innego, jak osiem. Widzisz, że otrzymaliśmy takie same wyniki. Ja osobiście częściej stosuję drugą metodę. Jeśli chcę podzielić liczbę naturalną przez ułamek, to wystarczy, że pomnożę tę liczbę przez odwrotność ułamka. Pokażę ci jeszcze, jak wykonać takie dzielenie. Wyobraź sobie, że idziecie z kolegami na pizzę. Zamawiacie po jednej dla każdego. Na przykład 4. Pizza są duże, więc każda osoba zjada dwa kawałki z trzech Ile osób najadłoby się tymi pizzami, zakładając, że każda osoba zjadłaby dwa kawałki z trzech? Aby odpowiedzieć na to pytanie, wystarczy wykonać takie dzielenie: Najpierw przepisujemy liczbę cztery. Następnie dzielenie zamieniamy na mnożenie. Liczbę cztery pomnożymy teraz przez odwrotność tego ułamka. Gdy zamienimy miejscami licznik i mianownik, otrzymamy ułamek trzy drugie. Czy da się uprościć to mnożenie? Możemy skrócić liczby 2 i 4, dzieląc je przez 2. Dwa podzielić przez dwa to jeden, a 4 podzielić przez 2 to 2. Trzy pierwsze to inaczej trzy. Otrzymujemy 2 razy 3, czyli 6. Wynik zapisuję w tym miejscu. Gdybyśmy mieli cztery pizze i każda osoba zjadłaby dwa kawałki z trzech, to takimi pizzami najadłoby się sześć osób. Mam teraz zadanie dla ciebie. Zatrzymaj lekcję i spróbuj samodzielnie obliczyć, ile to jest 12 podzielić przez 4/5. Najpierw zapisujemy liczbę, którą dzielimy, czyli 12. Następnie dzielenie zamieniamy na mnożenie. Liczbę 12 pomnożymy przez odwrotność tego ułamka. Odwrotnością ułamka 4/5 jest ułamek 5/4. Teraz sprawdzimy, czy da się uprościć to mnożenie. Możemy skrócić liczby 12 i 4, dzieląc je przez 4. Cztery podzielić przez cztery to jeden, a dwanaście podzielić przez cztery to trzy. Pięć pierwszych to pięć. Trzy razy 5 to 15. Wynik zapisuję tutaj. Zobacz: gdybyśmy mieli 12 czekolad i każda osoba zjadłaby dokładnie 4/5 czekolady, to takimi czekoladami najadłoby się 15 osób. A teraz ostatnie zadanie dla ciebie. Zatrzymaj lekcję i spróbuj samodzielnie obliczyć, ile to jest 8 podzielić przez 6/5. Najpierw przepisujemy liczbę osiem. Następnie dzielenie zamieniamy na mnożenie. Liczbę 8 pomnożymy przez odwrotność ułamka 6/5, czyli przez 5/6. Sprawdźmy, czy da się uprościć to mnożenie. Liczby 8 i 6 dzielą się przez 2. Sześć podzielić przez dwa to trzy, a osiem podzielić przez dwa to cztery. Otrzymujemy 4 razy 5/3. W takim przypadku liczbę 4 mnożymy przez 5 i otrzymujemy 20. W mianowniku zapisujemy 3. Otrzymaliśmy ułamek niewłaściwy 20/3. Zamieńmy go na liczbę mieszaną. 20/3 to sześć i 2/3. Aby podzielić liczbę naturalną przez ułamek zwykły, pomnóż liczbę naturalną przez mianownik i podziel przez licznik ułamka. Możesz też zamienić dzielenie na mnożenie przez odwrotność drugiego ułamka. Sprawdź, czy możesz uprościć otrzymane mnożenie. Pamiętaj, aby wynik zapisać w postaci ułamka nieskracalnego lub liczby mieszanej. Czy wiesz, gdzie jeszcze możemy spotkać się w życiu codziennym z dzieleniem liczb naturalnych przez ułamki? Jeśli tak, to napisz w komentarzu. Zapraszam też do zasubskrybowania naszego kanału oraz do polubienia naszej strony na Facebooku.

Pobieranie materiałów

Poniższe materiały są udostępniane na otwartej licencji Creative Commons Uznanie autorstwa 4.0.

cc-by